3D Ligand-Based Virtual Screening with Support Vector Machines

نویسنده

  • Jean-Philippe Vert
چکیده

Computational models play an important role in early-stage drug discovery, in particular for lead identification and optimization. Starting from a list of molecules with experimentally determined binding affinity to a particular therapeutic target, as typically obtained by high-throughput screening (HTS), the goal of lead optimization is to find additional molecules with good binding affinity. The resulting leads are then further optimized, in particular to improve their pharmacokinetical and toxicological profiles, eventually leading to new candidate drugs. Lead identification and optimization are usually performed by screening large databanks of small molecules, e.g., created by combinatorial chemistry, to find active molecules. Since experimental screening remains costly and timeconsuming when large banks are concerned, and given the immensity of the space of small molecules which may be synthesized, in silico screening provides an interesting complementary approach to identify active molecules. An in silico screening is based on a model which can predict the activity of candidate molecules from their structure. Two general classes of models are often used. First, if the 3D structure of the target is known, then docking models predict whether AbsTRACT

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

Machine learning in virtual screening.

In this review, we highlight recent applications of machine learning to virtual screening, focusing on the use of supervised techniques to train statistical learning algorithms to prioritize databases of molecules as active against a particular protein target. Both ligand-based similarity searching and structure-based docking have benefited from machine learning algorithms, including naïve Baye...

متن کامل

The Pharmacophore Kernel for Virtual Screening with Support Vector Machines

We introduce a family of positive definite kernels specifically optimized for the manipulation of 3D structures of molecules with kernel methods. The kernels are based on the comparison of the three-point pharmacophores present in the 3D structures of molecules, a set of molecular features known to be particularly relevant for virtual screening applications. We present a computationally demandi...

متن کامل

Virtual screening with support vector machines and structure kernels

Support vector machines and kernel methods have recently gained considerable attention in chemoinformatics. They offer generally good performance for problems of supervised classification or regression, and provide a flexible and computationally efficient framework to include relevant information and prior knowledge about the data and problems to be handled. In particular, with kernel methods m...

متن کامل

A Machine Learning Approach to Enhance Scoring Performance in Docking-Based Virtual Screening Experiments: COX-1 as a Case Study

Molecular docking can be reasonably successful at reproducing X-ray poses of a ligand in the binding site of a protein. However, scoring functions are typically unsuccessful at correctly ranking ligands according to their binding affinity. Using cyclooxygenase-1 (COX-1), a particularly challenging workhorse in virtual screening (VS) we show how the use of support vector machines (SVMs), trained...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015